

Number: CTSO-C142a Date of approval: June 12, 2015 Approved by: Yang Zhenmei

China Civil Aviation Technical Standard Order

This China Civil Aviation Technical Standard Order (CTSO) is issued according to Part 37 of the China Civil Aviation Regulations (CCAR-37). Each CTSO is a criterion which the concerned aeronautical materials, parts or appliances used on civil aircraft must comply with when it is presented for airworthiness certification.

Non-Rechargeable Lithium Cells and Batteries

1. Purpose.

This China Civil Aviation Technical Standard Order (CTSO) is for manufacturers applying for a non-rechargeable lithium cells and batteries CTSO authorization (CTSOA). This CTSO prescribes the minimum performance standards(MPS) that non-rechargeable lithium cells and batteries must first meet for approval and identification with the applicable CTSO marking.

2. Applicability.

This CTSO affects new application submitted after its effective date. Major design changes to article approved under this CTSO will require a new authorization in accordance with section 21.310 of CCAR-21R3.

3. Requirements.

New models of non-rechargeable lithium cells and batteries identified and manufactured on or after the effective date of this CTSO

- 1 -

must meet the MPS qualification and documentation requirements in **RTCA** Inc. document, RTCA/DO-227, Minimum Operational Performance Standards (MOPS) for Lithium Batteries, dated June 23, 1995, sections 2.0, as amended by appendix 1 of this CTSO. RTCA/DO-227 contains requirements and guidance on chemical composition, quantity of potentially hazardous substances, cell size, cell construction, interconnection of cells into batteries, fusing, venting, current limiting and testing. RTCA/DO-227 also covers operational and storage environments, packaging, handling and battery disposal that affect the use of these articles in aircraft.

a. Functionality. This CTSO's standards apply to non-rechargeable lithium cells and batteries intended to provide power for aircraft equipment including emergency and standby systems. Non-rechargeable cells and batteries are also called primary.

b. Failure Condition Classifications. Failure of the function defined in paragraphs 3 and 3.a of this CTSO is a major failure condition. Develop cells and batteries to, at least, the design assurance level equal to this failure condition classification.

c. Functional Qualification. Demonstrate the required performance under the test conditions in RTCA/DO-227, Sections 2.2 and 2.4, as amended by appendix 1 of this CTSO.

d. Environmental Qualification. Test the equipment according to

- 2 -

RTCA/DO-227, Section 2.3, as amended by appendix 1 of this CTSO.

e. Deviations. For using alternative or equivalent means of compliance to the criteria in this CTSO, the applicant must show that the equipment maintains an equivalent level of safety. Apply for a deviation under the provision of 21.310(b) in CCAR-21R3.

4. Marking.

Mark each cell or battery permanently and legibly with all the information in 21.312(d) of CCAR-21R3 and RTCA/DO-227, Section 1.4.6.

5. Application Data Requirements.

The applicant must furnish the responsible certification personnel with the related data to support design and production approval. The application data include a statement of conformance as specified in section 21.310(c)(3) in CCAR-21R3 and one copy each of the following technical data:

a. Operating instructions and equipment limitations, sufficient to describe the cell or battery's operational capability. Describe any deviations in detail. If needed, identify cell or battery by part number, version, revision, and criticality level of software/hardware, classification for use, and environmental categories.

b. Installation procedures and limitations, sufficient to ensure that the cells and batteries, when installed according to the installation

- 3 -

procedures, still meet this CTSO's requirements. The limitations must identify any unique aspects of the installation. Finally, the limitations must include a note with the following statement:

"This article meets the minimum performance and quality control standards required by a CTSO. Installation of this article requires separate approval."

c. Schematic drawings of the installation procedures.

d. Wiring diagrams of the installation procedures.

e. List of components, by part number, that make up the cells or batteries complying with the standards in this CTSO. Include vendor part number cross-references, when applicable.

f. A component maintenance manual (CMM), covering periodic maintenance, calibration, and repair, for the continued airworthiness of installed cells or batteries. Instructions should include recommended inspection intervals and service life. Describe the details of deviations granted, as noted in paragraph 5.a of this CTSO.

g. Material and process specifications list.

h. The quality control system description required by section 21.143 and 21.310(c)(2) of CCAR-21R3, including functional test specifications. The quality control system should ensure that it will detect any change to the approved design that could adversely affect compliance with this CTSO MPS, and reject the article accordingly.

- 4 -

i. Manufacturer's CTSO qualification test report.

j. Nameplate drawing with the information required by paragraph 4 of this CTSO.

k. A list of all drawings and processes (including revision level), to define the article's design.

l. An environmental qualifications form for the cells or batteries describing the environmental tests conducted.

6. Manufacturer Data Requirements.

Besides the data given directly to the authorities, have the following technical data available for review by the authorities:

a. Functional qualification specifications for qualifying each production article to ensure compliance with this CTSO.

b. Equipment calibration procedures.

c. Corrective maintenance procedures within 12 months after CTSO authorization.

d. Schematic drawings.

e. Wiring diagrams.

f. Material and process specifications.

g. The results of the environmental qualification tests conducted per RTCA/DO-227, Section 2.3, as modified by appendix 1 of this TSO.

7. Furnished Data Requirements.

If furnishing one or more articles manufactured under this CTSO to

- 5 -

one entity (such as an operator or repair station), send one copy of the data in paragraphs 5.a through 5.f plus 5.i for each article manufactured under this CTSO.

8. Availability of Referenced Documents.

Order RTCA documents from:

Radio Technical Commission for Aeronautics, Inc.

1150 18th Street NW, Suite 910, Washington D.C. 20036.

You may also order them online from www.rtca.org.

Appendix 1. Minimum Performance Standard for Lithium Batteries

1. Purpose. This appendix prescribes the MPS for lithium batteries as modified by the authorities for reference in this CTSO.

2. Requirements. The standards applicable to this CTSO are set forth in the industry standard, RTCA/DO-227, Minimum Operational Performance Standard for Lithium Batteries, dated June 23, 1995. The standard is modified, as follows:

RTCA/DO-227section and title:	Modification:		
1.5.11 Design Life	ADD at the end of the paragraph		
	"Equipment manufacturers are responsible for ensuring		
	that the integrity of date coding systems used by the		
	cell/battery supplier(s) will support design life criteria."		
1.7.3, Lot Acceptance	ADD at the end of the paragraph		
Test Goals	"We recommend that the manufacture's lot acceptance		
	testing include the discharge tests described by paragraph		
	2.4.1.1 Capacity-Verification Test."		
2.1.2 b., Performance	ADD at the end of the paragraph		
Requirements	"If the battery is required to operate in temperatures		
	outside this envelope, test the battery using the more severe		
	temperatures."		
Table 2-1, CELL	DELETE the superscript "4" on the Internal Short-Circuit		
EVALUATION	Test row under the "FIRE" column. The superscript "4" is		
CRITERIA	only used under the Forced-Discharge, External		
	Short-Circuit, and Charging tests, and then only under the		
	"LEAK" and "VENT" columns		
2.1.8.2 Test Tolerances	ADD new paragraphs after 2.1.8.2		
	Rated Capacity and Current		
	Except as otherwise specified in the test methods in		
	subsections 2.3 and 2.4, the rated capacity and current must		
	be the same for all testing in this standard.		
	Warning - Hazards of Testing		
	When subjected to electrical testing specified in this		

Table 1. Modifications to RTCA/DO-227

	document, calle or betteries may look or year bezerdous			
	document, cells or batteries may leak or vent hazardous			
	materials, burn, or in exceptional cases, vent violently.			
2.3.1 Vibration Test	REPLACE Figure 2-3 with the modified STANDARD			
Figure 2-3	RANDOM VIBRATION Figure 2-3 in appendix 1 of this			
	CTSO. This revised figure depicts different limit lines.			
2.3.1, Vibration Test	REPLACE Figure 2-4 with the modified STANDARD			
Figure 2-4	RANDOM VIBRATION Figure 2-4 in appendix 1 of this			
	CTSO. This revised figure depicts different limit lines.			
2.3.1, Vibration Test	ADD before the last sentence in the eighth paragraph			
	"Measure the open circuit voltage (OCV) before, during,			
	and after the tests."			
2.3.2, Shock Test	REPLACE the wording with			
,	"For the battery shock test, mount samples in the			
	equipment in which they will be used.			
	Perform this test using undischarged sample cells or			
	batteries. Secure the sample to a shock table by a			
	mechanically secured device. The shock test machine must			
	be capable of imparting a series of calibrated shock			
	impulses to the sample. The shock impulse waveform			
	distortion at any point on the waveform may not be greater			
	than 15 percent of the peak value of the shock pulse. The			
	duration of the shock pulse is specified with reference to the			
	zero points of the wave. The shock forces are specified in			
	terms of peak amplitude g values.			
	Measure the shock impulse using a calibrated accelerometer			
	and associated instrumentation having a 3db response over			
	a range of at least 5 to 250 Hz. Mount the sample on the			
	shock test machine so that the shock impulses can be			
	applied in both directions of the three orthogonal axes.			
	For general purposes, use the following test parameters.			
	Apply a 75 g saw tooth wave shock impulse with a duration			
	of 11 ± 2 ms in both directions of the three orthogonal axes.			
	Measure the open circuit voltage before and after the test.			
	Examine each sample to determine if it meets the			
	requirements of Table 2-1 and 2-2.			
	For applications with shock requirements in excess of the			
	general test (that is, where crashworthiness, ELTs, or			
	survivability is an issue), use the following more stringent			
	requirements. Apply a 100 g half sine wave shock impulse			
	with a duration of 23 ± 2 ms in both directions of the three			
	orthogonal axes. Measure the open circuit voltage (OCV)			
	before, during and after the test. Examine each sample to			
	determine if it meets the requirements of Table 2-1 or Table			
	2-2."			
	$\mathcal{L}^{-\mathcal{L}}$,			

2.3.3 Temperature	CHANGE 10 times to 9 times	
Cycling Test	CHANGE 10 times to 9 times	
_ • • •	ADD to the end of the new reach	
2.3.3, Temperature	ADD to the end of the paragraph, "for either method."	
Cycling Test		
2.4.1.2, Discharge Test	ADD after the second sentence in the first paragraph,	
	"Set the DC power supply to a voltage limit equal to the	
	number of cells per series string in the battery times the	
2412 Discharze Test	OCV of an individual cell."	
2.4.1.2, Discharge Test	ADD to the end of the first paragraph	
	"If the sample contains one or more protective devices, set	
	the test current to just below (by no more than 10 percent)	
	the current at which any protective device will activate	
	during the forced discharge test."	
2.4.1.3, Forced	DELETE the fourth sentence: If the sample contains one or	
Discharge Test	more protective devices, the test current is just below (by	
	no more than 10%) that at which any protective device will	
	activate during the forced discharge test.	
2.4.1.3, Forced	ADD to the end of the paragraph	
Discharge Test	"This test is not required for single cell batteries. Test the	
	cells up to and (possibly) including the maximum rate of	
	discharge specified by the manufacturer. Rate any	
	protective device at or below the discharge rate specified by	
	the manufacturer. Perform all testing according to this rating."	
2.4.2.1, Internal	REPLACE the first paragraph with	
Short-circuit Test	"This test is designed to determine the effects of an	
	internal short circuit in undischarged cells. At 24°C, deform	
	the sample between a rod with a hard insulating surface and	
	an insulated plate. Each cell is deformed until the open	
	circuit voltage drops abruptly or is reduced to at least one	
	third. At the point where the cell voltage drops, remove the	
	applied force. Allow the sample to cool to 24° C, and then	
	hold for a minimum of 24 hours. Examine each sample to	
	determine if it meets the requirements of Table 2-1."	
3.4, Test Procedures for	ADD new paragraph after 3.4	
Installed Equipment	Toxic Gas Venting Precautions	
Performance	Do not install or use batteries that can vent toxic gases in	
	the aircraft cockpit, because of an increased probability of	
	immediate flight crew impairment. Batteries that can vent	
	toxic gases may be installed or used in an aircraft passenger	
	compartment, if the installer shows that this would not	
	create a safety hazard.	
	You can prevent a safety hazard by:	
	a. Installing a system for overboard venting, absorption, or	

	•		
	containment, or		
	b. Showing that, if venting occurs, permissible exposure		
	limits do not exceed those maintained by safety-standard		
	organizations (Occupational Safety and Health		
	Administration and the American Conference of		
	Governmental Industrial Hygienists, Inc.).		
3.4, Test Procedures for	ADD new paragraph after 3.4		
Installed Equipment	(a) Because lithium batteries have ignited, vented gas or		
Performance	exploded, we require additional performance standards		
	governing the use of lithium batteries or equipment		
	incorporating lithium cells or batteries on airplanes.		
	Airplane and equipment manufacturers incorporating		
	lithium cells or batteries must ensure that if there is a fire		
	within a single cell of the battery, the equipment unit will		
	contain the fragments and debris (but not		
	smoke/gases/vapors) from a battery explosion and fire. Fire		
	within the equipment, such as from wires and electrical		
	components, must self-extinguish.		
	(b) See Table 2, appendix 1 of this CTSO for tests to ensure		
	that the manufacturer has met the fire safety requirements		
	for equipment incorporating lithium cells or batteries.		

Figure 2-3. Standard Random Vibration Test Curves for Equipment

Installed in Fixed Wing Aircraft With Turbojet Engines

NOTE: All slopes are ±6 dB/Octave and the cumulative spectral power density is 4.12 g (rms).

Figure 2-4. Robust Random Vibration Test Curves for Equipment

NOTE: All slopes are ±6 dB/Octave and the cumulative spectral power density is 6.08 g (rms).

Test	Procedures	Criteria to Pass
External Short	Measure direct connection	No venting of gases/vapors.
Circuit	between terminals through	No smoke produced.
	electric wire with resistance	No ignition or fire. No explosion.
	of 2m-ohm.	
	State of Charge (SoC) of a	
	cell : 100%	
Crush	Test battery by dropping an	No venting of gases/vapors.
	iron ball (9.1 kg) from the	No smoke produced.
	height of 61cm	No ignition or fire. No explosion.
	SoC of a cell : 50%	
Over discharge	Test battery by discharging	No venting of gases/vapors.
	with a current of 1C for 1	No smoke produced.
	hour (or to the maximum	No ignition or fire. No explosion.
	discharge time for the	
	battery operation).	
	SoC of a cell : 0%	
Overheat	Test battery by heating up to	No venting of gases/vapors.
	115 degrees C in the oven.	No smoke produced.
	SoC of a cell : 100%	No ignition or fire. No explosion
Fire	Test equipment unit with	Unit must contain the
	battery in place for fire	fragments/debris from explosion but
	penetration by igniting a	not gases/vapors/smoke. Fire within
	single unit.	the unit must self-extinguish. Note
	SoC of a cell : 100%	that the presence of a fire
		extinguishing or suppression system
		outside the battery (such as in the
		equipment compartment) may be
		used to provide this feature if the
		system is designed to handle this
		fire threat.